Low Ambient Temperature Exposition Impairs the Accuracy of a Non-invasive Heat-Flux Thermometer

Author:

Masè Michela,Werner Andreas,Putzer Gabriel,Avancini Giovanni,Falla Marika,Brugger Hermann,Micarelli Alessandro,Strapazzon Giacomo

Abstract

BackgroundIndirect core body temperature (CBT) monitoring from skin sensors is gaining attention for in-field applications thanks to non-invasivity, portability, and easy probe positioning. Among skin sensors, heat-flux devices, such as the so-called Double Sensor (DS), have demonstrated reliability under various experimental and clinical conditions. Still, their accuracy at low ambient temperatures is unknown. In this randomized cross-over trial, we tested the effects of cold temperature exposition on DS performance in tracking CBT.MethodsTwenty-one participants were exposed to a warm (23.2 ± 0.4°C) and cold (−18.7 ± 1.0°C) room condition for 10 min, following a randomized cross-over design. The accuracy of the DS to estimate CBT in both settings was assessed by quantitative comparison with esophageal (reference) and tympanic (comparator) thermometers, using Bland–Altman and correlation analyses (Pearson’s correlation coefficient, r, and Lin’s concordance correlation coefficient, CCC).ResultsIn the warm room setting, the DS showed a moderate agreement with the esophageal sensor [bias = 0.09 (−1.51; 1.69) °C, r = 0.40 (p = 0.069), CCC = 0.22 (−0.006; 0.43)] and tympanic sensor [bias = 2.74 (1.13; 4.35) °C, r = 0.54 (p < 0.05), CCC = 0.09 (0.008; 0.16)]. DS accuracy significantly deteriorated in the cold room setting, where DS temperature overestimated esophageal temperature [bias = 2.16 (−0.89; 5.22) °C, r = 0.02 (0.94), CCC = 0.002 (−0.05; 0.06)]. Previous exposition to the cold influenced temperature values measured by the DS in the warm room setting, where significant differences (p < 0.00001) in DS temperature were observed between randomization groups.ConclusionDS accuracy is influenced by environmental conditions and previous exposure to cold settings. These results suggest the present inadequacy of the DS device for in-field applications in low-temperature environments and advocate further technological advancements and proper sensor insulation to improve performance in these conditions.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3