The Programming of Antioxidant Capacity, Immunity, and Lipid Metabolism in Dojo Loach (Misgurnus anguillicaudatus) Larvae Linked to Sodium Chloride and Hydrogen Peroxide Pre-treatment During Egg Hatching

Author:

Wang Mengya,Xu Wenyu,Zou Jiahong,Li Shuaitong,Song Zixi,Zheng Feifei,Ji Wei,Xu Zhen,Wang Qingchao

Abstract

Non-nutritional stress during early life period has been reported to promote the metabolic programming in fish induced by nutritional stimulus. Sodium chloride (NaCl) and hydrogen peroxide (H2O2) have been widely applied during fish egg hatching, but the influences on health and metabolism of fish in their later life remain unknown. In the present study, H2O2 treatment at 400mg/L but not 200mg/L significantly increased the loach hatchability and decreased the egg mortality, while NaCl treatment at 1,000 and 3,000mg/L showed no significant influences on the loach hatchability nor egg mortality. Further studies indicated that 400mg/L H2O2 pre-treatment significantly enhanced the antioxidant capacity and the mRNA expression of genes involved in immune response of loach larvae, accompanied by the increased expression of genes involved in fish early development. However, the expression of most genes involved in lipid metabolism, including catabolism and anabolism of loach larvae, was significantly upregulated after 200mg/L H2O2 pre-treatment. NaCl pre-treatment also increased the expression of antioxidant enzymes; however, only the expression of C1q within the detected immune-related genes was upregulated in loach larvae. One thousand milligram per liter NaCl pre-treatment significantly increased the expression of LPL and genes involved in fish early development. Thus, our results suggested the programming roles of 400mg/L H2O2 pre-treatment during egg hatching in enhancing antioxidant capacity and immune response of fish larvae via promoting fish early development.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3