Differential Gene Analysis of Trastuzumab in Breast Cancer Based on Network Pharmacology and Medical Images

Author:

Lu Yuan,Bi Juan,Li Fei,Wang Gang,Zhu Junjie,Jin Jiqing,Liu Yueyun

Abstract

The purpose of this study was to use network pharmacology, biomedical images and molecular docking technology in the treatment of breast cancer to investigate the feasible therapeutic targets and mechanisms of trastuzumab. In the first place, we applied pubchem swisstarget (http://www.swisstargetprediction.ch/), (https://pubchem.ncbi.nlm.nih.gov/) pharmmapper (http://lilab-ecust.cn/pharmmapper/), and the batman-tcm (http://bionet.ncpsb.org.cn/batman-tcm/) database to collect the trastuzumab targets. Then, in NCBI-GEO, breast cancer target genes were chosen (https://www.ncbi.nlm.nih.gov/geo/). The intersection regions of drug and disease target genes were used to draw a Venn diagram. Through Cytoscape 3.7.2 software, and the STRING database, we then formed a protein-protein interaction (PPI) network. Besides, we concluded KEGG pathway analysis and Geen Ontology analysis by using ClueGO in Cytospace. Finally, the top 5 target proteins in the PPI network to dock with trastuzumab were selected. After screening trastuzumab and breast cancer in databases separately, we got 521 target genes of the drug and 1,464 target genes of breast cancer. The number of overlapping genes was 54. PPI network core genes include GAPDH, MMP9, CCNA2, RRM2, CHEK1, etc. GO analysis indicated that trastuzumab treats breast cancer through abundant biological processes, especially positive regulation of phospholipase activity, linoleic acid metabolic process, and negative regulation of endothelial cell proliferation. The molecular function is NADP binding and the cellular component is tertiary granule lumen. The results of KEGG enrichment analysis exhibited four pathways related to the formation and cure of breast cancer, containing Drug metabolism, Glutathione metabolism, Pyrimidine metabolism and PPAR signaling pathway. Molecular docking showed that trastuzumab has good binding abilities with five core target proteins (GAPDH, MMP9, CCNA2, RRM2, CHEK1). This study, through network pharmacology and molecular docking, provides new pieces of evidence and ideas to understand how trastuzumab treats breast cancer at the gene level.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3