NH3/NH4+ allosterically activates SLC4A11 by causing an acidic shift in the intracellular pK that governs H+(OH−) conductance

Author:

Pasternack Richard A.,Quade Bianca N.,Marshall Aniko,Parker Mark D.

Abstract

SLC4A11 is the most abundant membrane transport protein in corneal endothelial cells. Its functional presence is necessary to support the endothelial fluid pump that draws fluid from the corneal stroma, preventing corneal edema. Several molecular actions have been proposed for SLC4A11 including H2O transport and cell adhesion. One of the most reproduced actions that SLC4A11 mediates is a H+ (or OH) conductance that is enhanced in the presence of NH4Cl. The mechanism by which this occurs is controversial with some providing evidence in favor of NH3-H+ cotransport and others providing evidence for uncoupled H+ transport that is indirectly stimulated by the effects of NH4Cl upon intracellular pH and membrane potential. In the present study we provide new evidence and revisit previous studies, to support a model in which NH4Cl causes direct allosteric activation of SLC4A11 by means of an acidic shift in the intracellular pK (pKi) that governs the relationship between intracellular pH (pHi) and SLC4A11 H+-conductance. These findings have important implications for the assignment of a physiological role for SLC4A11.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3