Effects of Transcranial Direct Current Stimulation on Upper Limb Muscle Strength and Endurance in Healthy Individuals: A Systematic Review and Meta-Analysis

Author:

Hu Kun,Chen Yu,Guo Feng,Wang Xin

Abstract

ObjectiveWhether transcranial direct current stimulation (tDCS) can improve upper limb muscle strength and endurance in healthy subjects is still controversial. This article reviews the relevant literature on the use of tDCS to improve upper limb muscle strength and endurance in healthy individuals.MethodsWe systematically searched the Cochrane Library, PubMed, EMBASE, and the Web of Science until September 4, 2021. Randomized parallel or crossover experimental studies on the effects of tDCS on upper limb muscle strength and endurance in healthy individuals were included. Review Manager 5.3 software was used to evaluate methodological quality and analyze the combined effect of the included literature.ResultsTwelve studies (189 participants) were included in the qualitative synthesis, and nine studies (146 participants) were included in the meta-analysis. Compared with the control group, the tDCS intervention had no significant effect on improving upper limb muscle strength [I2 = 0%, 95% CI (−0.79, 0.23), p = 0.98, MD = 0.01]. In this analysis, tDCS had a significant heterogeneity (I2 = 87%) in improving upper limb muscle endurance compared with the control group. After the subgroup analysis and the sensitivity analysis, the source of heterogeneity was excluded. The final results showed that tDCS had a significant effect on improving upper limb muscle endurance [I2 = 0%, 95% CI (1.91, 4.83), p < 0.00001, MD = 3.37].ConclusionstDCS has no significant effect on improvement of upper limb muscle strength, but has a significant effect on improving upper limb endurance performance (especially on the non-dominant side).

Funder

National Natural Science Foundation of China

Ministry of Science and Technology of the People's Republic of China

Department of Education of Liaoning Province

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3