Low carbohydrate high fat ketogenic diets on the exercise crossover point and glucose homeostasis

Author:

Noakes T. D.,Prins P. J.,Volek J. S.,D’Agostino D. P.,Koutnik A. P.

Abstract

In exercise science, the crossover effect denotes that fat oxidation is the primary fuel at rest and during low-intensity exercise with a shift towards an increased reliance on carbohydrate oxidation at moderate to high exercise intensities. This model makes four predictions: First, >50% of energy comes from carbohydrate oxidation at ≥60% of maximum oxygen consumption (VO2max), termed the crossover point. Second, each individual has a maximum fat oxidation capacity (FATMAX) at an exercise intensity lower than the crossover point. FATMAX values are typically 0.3–0.6 g/min. Third, fat oxidation is minimized during exercise ≥85%VO2max, making carbohydrates the predominant energetic substrate during high-intensity exercise, especially at >85%VO2max. Fourth, high-carbohydrate low-fat (HCLF) diets will produce superior exercise performancesviamaximizing pre-exercise storage of this predominant exercise substrate. In a series of recent publications evaluating the metabolic and performance effects of low-carbohydrate high-fat (LCHF/ketogenic) diet adaptations during exercise of different intensities, we provide findings that challenge this model and these four predictions. First, we show that adaptation to the LCHF diet shifts the crossover point to a higher %VO2max (>80%VO2max) than previously reported. Second, substantially higher FATMAX values (>1.5 g/min) can be measured in athletes adapted to the LCHF diet. Third, endurance athletes exercising at >85%VO2max, whilst performing 6 × 800 m running intervals, measured the highest rates of fat oxidation yet reported in humans. Peak fat oxidation rates measured at 86.4 ± 6.2%VO2max were 1.58 ± 0.33 g/min with 30% of subjects achieving >1.85 g/min. These studies challenge the prevailing doctrine that carbohydrates are the predominant oxidized fuel during high-intensity exercise. We recently found that 30% of middle-aged competitive athletes presented with pre-diabetic glycemic values while on an HCLF diet, which was reversed on LCHF. We speculate that these rapid changes between diet, insulin, glucose homeostasis, and fat oxidation might be linked by diet-induced changes in mitochondrial function and insulin action. Together, we demonstrate evidence that challenges the current crossover concept and demonstrate evidence that a LCHF diet may also reverse features of pre-diabetes and future metabolic disease risk, demonstrating the impact of dietary choice has extended beyond physical performance even in athletic populations.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3