Oxygenation Performance of Different Non-Invasive Devices for Treatment of Decompression Illness and Carbon Monoxide Poisoning

Author:

Köhler Andrea,Zoll Felicitas M.,Ploner Thomas,Hammer Alexander,Joannidis Michael,Tilg Herbert,Finkenstedt Armin,Hartig Frank

Abstract

Study Objective:Application of high concentrations of oxygen to increase oxygen partial pressure (pO2) is the most important treatment for patients with carbon monoxide intoxication or divers with suspected decompression illness. The aim of this study was to evaluate the oxygenation performance of various non-invasive oxygen systems.Methods:The effect of different oxygen systems on arterial pO2, pCO2 and pH and their subjective comfort was evaluated in 30 healthy participants. Eight devices were included: nasal cannula, non-rebreather mask, AirLife Open mask, Flow-Safe II CPAP device, SuperNO2VA nasal PAP device, all operated with 15 L/min constant flow oxygen; nasal high-flow (50 L/min flow, 1.0 FiO2), non-invasive positive pressure ventilation (NPPV, 12 PEEP, 4 ASB, 1.0 FiO2) and a standard diving regulator (operated with pure oxygen).Results:Diving regulator, SuperNO2VA, nasal high-flow and NPPV achieved mean arterial pO2 concentrations between 538 and 556 mm Hg within 5 minutes. The AirLife Open mask, the nasal cannula and the non-rebreather mask achieved concentrations of 348–451 mm Hg and the Flow-Safe II device 270 mm Hg. Except for the AirLife open mask, pCO2 decreased and pH increased with all devices. The highest pH values were observed with NPPV, diving regulator, Flow-Safe II and nasal high-flow but apparent hyperventilation was uncommon. The AirLife Open and the non-rebreather mask were the most comfortable, the SuperNO2VA and the nasal cannula the most uncomfortable devices.Conclusion:A standard diving regulator and the SuperNO2VA device were equally effective in providing highest physiologically possible pO2 as compared to nasal high-flow and NPPV.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3