Relationship Between Isokinetic Lower-Limb Joint Strength, Isometric Time Force Characteristics, and Leg-Spring Stiffness in Recreational Runners

Author:

Chen Shiqin,Wang Dan,Zhang Qin,Shi Yue,Ding Haiyong,Li Fei

Abstract

Neuromuscular characteristics, such as lower-limb joint strength and the ability to rapidly generate force, may play an important role in leg-spring stiffness regulation. This study aimed to investigate the relationship between isokinetic knee and ankle joint peak torque (PT), the force-time characteristics of isometric mid-thigh pull (IMTP), and leg stiffness (Kleg)/vertical stiffness (Kvert) in recreationally trained runners. Thirty-one male runners were recruited and underwent three separate tests. In the first session, the body composition, Kleg, and Kvert at running speeds of 12 and 14 km⋅h–1 were measured. In the second session, isokinetic knee and ankle joint PT at 60°⋅s–1 were tested. The force-time characteristics of the IMTP were evaluated in the final session. Pearson’s product-moment correlations, with the Benjamini–Hochberg correction procedure, showed that the knee flexor concentric and eccentric and extensor concentric PT (r = 0.473–0.654, p < 0.05) were moderate to largely correlated with Kleg and Kvert at 12 and 14 km⋅h–1. The knee extensor eccentric PT (r = 0.440, p = 0.050) was moderately correlated with the 14 km⋅h–1Kvert. The ankle plantar flexor concentric and dorsiflexor eccentric PT (r = 0.506–0.571, p < 0.05) were largely correlated with Kleg at 12 km⋅h–1. The ankle plantar flexor concentric and eccentric and dorsiflexor eccentric PT (r = 0.436–0.561, p < 0.05) were moderate to largely correlated with Kvert at 12 and 14 km⋅h–1. For IMTP testing, high correlation was only found between the IMPT peak force (PF) and Kvert at 14 km⋅h–1 (r = 0.510, p = 0.014). Thus, superior leg-spring stiffness in recreational runners may be related to increased knee and ankle joint strength, eccentric muscular capacity, and maximal force production.

Funder

Science and Technology Commission of Shanghai Municipality

Shanghai University of Sport

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3