Endocrine disruptors affect the expression of estrogen receptor genes and proteins in the white cloud mountain minnow Tanichthys albonubes (Teleostei: Cyprinidae)

Author:

Ke Chen,Meilin Chen,Guangzhi Ma,Yuqin Fan,Lin Liu,Weiting Chen

Abstract

The endocrine disruptor chemicals (EDCs) are ubiquitous in the environment, and it has raised wide public concern because of the dangers of EDCs for living organisms and the environment. In order to comparatively study the effects of EDCs [17-α-ethinylestradiol (EE2), Bisphenol A (BPA) and Nonylphenol (NP)] on the expression of estrogen receptors (ERs: erα, erβ1, and erβ2) at mRNA and protein level, total 520 adult Tanichthys albonubes were exposed to E2, EE2, BPA and NP with three concentrations respectively: EE2 (1, 5, 25 ng/l), NP (10, 50, 250 μg/l), BPA (100, 500, 2,500 μg/l) for 28 days, E2 (2, 20, 200 ng/l) being as the positive control. After treatment, the brain, eye, gill, heart, liver, gut, kidney, muscle, testis, and ovary were collected, following by the real-time quantitative PCR (RT-qPCR) and western blot methods to detect the expression levels of erα, erβ1, and erβ2 in T.albonubes at mRNA and protein level. Our results showed that high expression of terα (t means T.albonubes), terβ1, and terβ2 were detected in liver, while terβ1 and terβ2 mainly expressed in the liver, intestine, kidney, muscle and testis. EE2, BPA, and NP treatment all up-regulated the expression of terα, terβ1, and terβ2 in the brain, liver, and testis, but with some variations. Similar to mRNA level, both TERα and TERβ were up-regulated by all the EE2, BPA, and NP treatment with dose-dependent effect. In conclusion, the responses of ERs of T.albonubes to the EDCs present measurability and susceptibility, which make it possible for T. albonubes to be an efficient biomarker to monitor and evaluate the pollution of endocrine disrupting chemicals in water environment.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3