Janus Kinase Mediates Faster Recovery From Sevoflurane Anesthesia Than Isoflurane Anesthesia in the Migratory Locusts

Author:

Ma Zongyuan,Zheng Jialin C.,Li Tianzuo,Xie Zhongcong,Kang Le

Abstract

Inhalation anesthetics isoflurane and sevoflurane have been widely used in clinical practice for anesthesia. However, the molecular mechanisms underlying the faster recovery from sevoflurane anesthesia than isoflurane anesthesia remain largely undetermined. Herein, we use RNA-seq, RNA interference, quantitative real-time PCR and western blotting to explore the mechanisms of recovery from isoflurane and sevoflurane anesthesia in the migratory locusts. Although the migratory locusts show similar anesthetic responses to these two chemicals in corresponding half-maximal effective concentrations (EC50s), the recovery from sevoflurane anesthesia is significantly faster than that for isoflurane anesthesia after 30 min of anesthetic exposure. Transcriptome analysis shows that those transcripts involved in cytoskeletal components, Janus kinase (JAK) pathway and cuticle protein are differentially expressed in locust brains in response to isoflurane and sevoflurane. RNAi knockdown confirms that Actin, Myosin-like protein 84B (Mlp84B), JAK and cuticle protein NCP56 do not affect anesthetic response of the locusts to these two chemical anesthetics. Moreover, actin, Mlp84B and NCP56 do not affect differential recovery from isoflurane and sevoflurane anesthesia, whereas RNAi knockdown of JAK and its partner STAT5B does not affect anesthetic recovery from isoflurane but elongates recovery duration from sevoflurane anesthesia. Thus, JAK may mediate faster recovery from sevoflurane anesthesia than from isoflurane anesthesia in the migratory locust. This finding provides novel insights into the molecular mechanism underlying faster recovery from sevoflurane anesthesia than isoflurane anesthesia.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3