Artificial intelligence assisted compositional analyses of human abdominal aortic aneurysms ex vivo

Author:

Thorsted Bjarne,Bjerregaard Lisette,Jensen Pia S.,Rasmussen Lars M.,Lindholt Jes S.,Bloksgaard Maria

Abstract

Quantification of histological information from excised human abdominal aortic aneurysm (AAA) specimens may provide essential information on the degree of infiltration of inflammatory cells in different regions of the AAA. Such information will support mechanistic insight in AAA pathology and can be linked to clinical measures for further development of AAA treatment regimens. We hypothesize that artificial intelligence can support high throughput analyses of histological sections of excised human AAA. We present an analysis framework based on supervised machine learning. We used TensorFlow and QuPath to determine the overall architecture of the AAA: thrombus, arterial wall, and adventitial loose connective tissue. Within the wall and adventitial zones, the content of collagen, elastin, and specific inflammatory cells was quantified. A deep neural network (DNN) was trained on manually annotated, Weigert stained, tissue sections (14 patients) and validated on images from two other patients. Finally, we applied the method on 95 new patient samples. The DNN was able to segment the sections according to the overall wall architecture with Jaccard coefficients after 65 epocs of 92% for the training and 88% for the validation data set, respectively. Precision and recall both reached 92%. The zone areas were highly variable between patients, as were the outputs on total cell count and elastin/collagen fiber content. The number of specific cells or stained area per zone was deterministically determined. However, combining the masks based on the Weigert stainings, with images of immunostained serial sections requires addition of landmark recognition to the analysis path. The combination of digital pathology, the DNN we developed, and landmark registration will provide a strong tool for future analyses of the histology of excised human AAA. In combination with biomechanical testing and microstructurally motivated mathematical models of AAA remodeling, the method has the potential to be a strong tool to provide mechanistic insight in the disease. In combination with each patients’ demographic and clinical profile, the method can be an interesting tool to in supportof a better treatment regime for the patients.

Funder

Hjerteforeningen

Odense Universitetshospital

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3