Boolean Feedforward Neural Network Modeling of Molecular Regulatory Networks for Cellular State Conversion

Author:

Choo Sang-Mok,Almomani Laith M.,Cho Kwang-Hyun

Abstract

The molecular regulatory network (MRN) within a cell determines cellular states and transitions between them. Thus, modeling of MRNs is crucial, but this usually requires extensive analysis of time-series measurements, which is extremely difficult to obtain from biological experiments. However, single-cell measurement data such as single-cell RNA-sequencing databases have recently provided a new insight into resolving this problem by ordering thousands of cells in pseudo-time according to their differential gene expressions. Neural network modeling can be employed by using temporal data as learning data. In contrast, Boolean network modeling of MRNs has a growing interest, as it is a parameter-free logical modeling and thereby robust to noisy data while still capturing essential dynamics of biological networks. In this study, we propose a Boolean feedforward neural network (FFN) modeling by combining neural network and Boolean network modeling approach to reconstruct a practical and useful MRN model from large temporal data. Furthermore, analyzing the reconstructed MRN model can enable us to identify control targets for potential cellular state conversion. Here, we show the usefulness of Boolean FFN modeling by demonstrating its applicability through a toy model and biological networks.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Reference30 articles.

1. Novel insights into breast cancer copy number genetic heterogeneity revealed by single-cell genome sequencing.;Baslan;eLife,2020

2. Single-cell epigenomics in cancer research.;Berkel;Biomed. J. Sci. Techn. Res.,2019

3. SCoPE-MS: mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation.;Budnik;Genome Biol.,2018

4. Single-cell trajectories reconstruction, exploration and mapping of omics data with STREAM.;Chen;Nat. Commun.,2019

5. The reverse control of irreversible biological processes.;Cho;WIREs Syst. Biol. Med.,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3