High Glucose Activated Cardiac Fibroblasts by a Disruption of Mitochondria-Associated Membranes

Author:

Zhang Ling-Yu,Lin Rui-Ting,Chen Hao-Ran,Yang Yong-Cong,Lin Meng-Fei,Tian Lei-Gang,Pan Zhi-Qiong,Lin Lin,Zhu Liang-Liang,Gu Zhen-Jie,Chen Xue-Wen,Li Yu-Jing,Chen Shuai,Cai Shi-Yun

Abstract

Cardiac fibrosis is evident even in the situation without a significant cardiomyocyte loss in diabetic cardiomyopathy and a high glucose (HG) level independently activates the cardiac fibroblasts (CFs) and promotes cell proliferation. Mitochondrial respiration and glycolysis, which are key for cell proliferation and the mitochondria-associated membranes (MAMs), are critically involved in this process. However, the roles and the underlying mechanism of MAMs in the proliferation of HG-induced CFs are largely unknown. The proliferation and apoptosis of CFs responding to HG treatment were evaluated. The MAMs were quantified, and the mitochondrial respiration and cellular glycolytic levels were determined using the Seahorse XF analyzer. The changes of signal transducer and activator of transcription 3 (STAT3) and mitofusin-2 (MFN2) in responding to HG were also determined, the effects of which on cell proliferation, MAMs, and mitochondrial respiration were assessed. The effects of STAT3 on MFN2 transcription was determined by the dual-luciferase reporter assay (DLRA) and chromatin immunoprecipitation (CHIP). HG-induced CFs proliferation increased the glycolytic levels and adenosine triphosphate (ATP) production, while mitochondrial respiration was inhibited. The MAMs and MFN2 expressions were significantly reduced on the HG treatment, and the restoration of MFN2 expression counteracted the effects of HG on cell proliferation, mitochondrial respiration of the MAMs, glycolytic levels, and ATP production. The mitochondrial STAT3 contents were not changed by HG, but the levels of phosphorylated STAT3 and nuclear STAT3 were increased. The inhibition of STAT3 reversed the reduction of MFN2 levels induced by HG. The DLRA and CHIP directly demonstrated the negative regulation of MFN2 by STAT3 at the transcription levels via interacting with the sequences in the MFN2 promoter region locating at about −400 bp counting from the start site of transcription. The present study demonstrated that the HG independently induced CFs proliferation via promoting STAT3 translocation to the nucleus, which switched the mitochondrial respiration to glycolysis to produce ATP by inhibiting MAMs in an MFN2-depression manner.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3