Performance evaluation of metaheuristics-tuned recurrent neural networks for electroencephalography anomaly detection

Author:

Pilcevic Dejan,Djuric Jovicic Milica,Antonijevic Milos,Bacanin Nebojsa,Jovanovic Luka,Zivkovic Miodrag,Dragovic Miroslav,Bisevac Petar

Abstract

Electroencephalography (EEG) serves as a diagnostic technique for measuring brain waves and brain activity. Despite its precision in capturing brain electrical activity, certain factors like environmental influences during the test can affect the objectivity and accuracy of EEG interpretations. Challenges associated with interpretation, even with advanced techniques to minimize artifact influences, can significantly impact the accurate interpretation of EEG findings. To address this issue, artificial intelligence (AI) has been utilized in this study to analyze anomalies in EEG signals for epilepsy detection. Recurrent neural networks (RNNs) are AI techniques specifically designed to handle sequential data, making them well-suited for precise time-series tasks. While AI methods, including RNNs and artificial neural networks (ANNs), hold great promise, their effectiveness heavily relies on the initial values assigned to hyperparameters, which are crucial for their performance for concrete assignment. To tune RNN performance, the selection of hyperparameters is approached as a typical optimization problem, and metaheuristic algorithms are employed to further enhance the process. The modified hybrid sine cosine algorithm has been developed and used to further improve hyperparameter optimization. To facilitate testing, publicly available real-world EEG data is utilized. A dataset is constructed using captured data from healthy and archived data from patients confirmed to be affected by epilepsy, as well as data captured during an active seizure. Two experiments have been conducted using generated dataset. In the first experiment, models were tasked with the detection of anomalous EEG activity. The second experiment required models to segment normal, anomalous activity as well as detect occurrences of seizures from EEG data. Considering the modest sample size (one second of data, 158 data points) used for classification models demonstrated decent outcomes. Obtained outcomes are compared with those generated by other cutting-edge metaheuristics and rigid statistical validation, as well as results’ interpretation is performed.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3