Exponential Relationship Between Maximal Apnea Duration and Exercise Intensity in Non-apnea Trained Individuals

Author:

Guimard Alexandre,Joulia Fabrice,Prieur Fabrice,Poszalczyk Gauthier,Helme Kader,Lhuissier François J.

Abstract

It is well known that the duration of apnea is longer in static than in dynamic conditions, but the impact of exercise intensity on the apnea duration needs to be investigated. The aim of this study was to determine the relationship between apnea duration and exercise intensity, and the associated metabolic parameters. Ten healthy active young non-apnea trained (NAT) men participated in this study. During the first visit, they carried out a maximum static apnea (SA) and a maximal progressive cycle exercise to evaluate the power output achieved at peak oxygen uptake (PVO2peak). During the second visit, they performed four randomized dynamic apneas (DAs) at 20, 30, 40, and 50% of PVO2peak (P20, P30, P40, and P50) preceded by 4 min of exercise without apnea. Duration of apnea, heart rate (HR), arterial oxygen saturation (SpO2), blood lactate concentration [La], rating of perceived exertion (RPE), and subjective feeling were recorded. Apnea duration was significantly higher during SA (68.1 ± 23.6 s) compared with DA. Apnea duration at P20 (35.6 ± 11.7 s) was higher compared with P30 (25.6 ± 6.3 s), P40 (19.2 ± 6.7 s), and P50 (16.9 ± 2.5 s). The relationship between apnea duration and exercise intensity followed an exponential function (y = 56.388e–0.025x). SA as DA performed at P20 and P30 induces a bradycardia. Apnea induces an SpO2 decrease which is higher during DA (−10%) compared with SA (−4.4%). The decreases of SPO2 recorded during DA do not differ despite the increase in exercise intensity. An increase of [La] was observed in P30 and P40 conditions. RPE and subjective feeling remained unchanged whatever the apnea conditions might be. These results suggest that the DA performed at 30% of VO2peak could be the best compromise between apnea duration and exercise intensity. Then, DA training at low intensity could be added to aerobic training since, despite the moderate hypoxia, it is sufficient to induce and increase [La] generally observed during high-intensity training.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Reference55 articles.

1. Heart rate response to breath-holding during supramaximal exercise.;Ahn;Eur. J. Appl. Physiol. Occup. Physiol,1989

2. Diving bradycardia: a mechanism of defence against hypoxic damage.;Alboni;J. Cardiovasc. Med.,2011

3. Arterial oxygen desaturation during apnea in humans.;Andersson;Undersea Hyperb. Med.,1998

4. Pulmonary gas exchange is reduced by the cardiovascular diving response in resting humans.;Andersson;Respir. Physiol. Neurobiol.,2008

5. Arterial oxygen saturation and diving response during dynamic apneas in breath-hold divers.;Andersson;Scand. J. Med. Sci. Sports,2009

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3