Delineation of intracavitary electrograms for the automatic quantification of decrement-evoked potentials in the coronary sinus with deep-learning techniques

Author:

Jimenez-Perez Guillermo,Acosta Juan,Bocanegra-Pérez Álvaro J.,Arana-Rueda Eduardo,Frutos-López Manuel,Sánchez-Brotons Juan A.,Llamas-López Helena,Di Massa Pezzutti Rodrigo,González de la Portilla Concha Carmen,Camara Oscar,Pedrote Alonso

Abstract

Cardiac arrhythmias cause depolarization waves to conduct unevenly on the myocardial surface, potentially delaying local components with respect to a previous beat when stimulated at faster frequencies. Despite the diagnostic value of localizing the distinct local electrocardiogram (EGM) components for identifying regions with decrement-evoked potentials (DEEPs), current software solutions do not perform automatic signal quantification. Electrophysiologists must manually measure distances on the EGM signals to assess the existence of DEEPs during pacing or extra-stimuli protocols. In this work, we present a deep learning (DL)-based algorithm to identify decrement in atrial components (measured in the coronary sinus) with respect to their ventricular counterparts from EGM signals, for disambiguating between accessory pathways (APs) and atrioventricular re-entrant tachycardias (AVRTs). Several U-Net and W-Net neural networks with different configurations were trained on a private dataset of signals from the coronary sinus (312 EGM recordings from 77 patients who underwent AP or AVRT ablation). A second, separate dataset was annotated for clinical validation, with clinical labels associated to EGM fragments in which decremental conduction was elucidated. To alleviate data scarcity, a synthetic data augmentation method was developed for generating EGM recordings. Moreover, two novel loss functions were developed to minimize false negatives and delineation errors. Finally, the addition of self-attention mechanisms and their effect on model performance was explored. The best performing model was a W-Net model with 6 levels, optimized solely with the Dice loss. The model obtained precisions of 91.28%, 77.78% and of 100.0%, and recalls of 94.86%, 95.25% and 100.0% for localizing local field, far field activations, and extra-stimuli, respectively. The clinical validation model demonstrated good overall agreement with respect to the evaluation of decremental properties. When compared to the criteria of electrophysiologists, the automatic exclusion step reached a sensitivity of 87.06% and a specificity of 97.03%. Out of the non-excluded signals, a sensitivity of 96.77% and a specificity of 95.24% was obtained for classifying them into decremental and non-decremental potentials. Current results show great promise while being, to the best of our knowledge, the first tool in the literature allowing the delineation of all local components present in an EGM recording. This is of capital importance at advancing processing for cardiac electrophysiological procedures and reducing intervention times, as many diagnosis procedures are performed by comparing segments or late potentials in subsequent cardiac cycles.

Funder

Generalitat de Catalunya

Publisher

Frontiers Media SA

Reference30 articles.

1. Elucidation of hidden slow conduction by double ventricular extrastimuli: a method for further arrhythmic substrate identification in ventricular tachycardia ablation procedures;Acosta;EP Eur.,2016

2. Long-term outcomes of ventricular tachycardia substrate ablation incorporating hidden slow conduction analysis;Acosta;Heart rhythm.,2020

3. Wavelet-based electrogram onset identification for ventricular electroanatomical mapping;Alcaine,2013

4. A wavelet-based electrogram onset delineator for automatic ventricular activation mapping;Alcaine;IEEE Trans. Biomed. Eng.,2014

5. Emerging properties in self-supervised vision transformers;Caron;Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3