A novel multistage ensemble approach for prediction and classification of diabetes

Author:

Simaiya Sarita,Kaur Rajwinder,Sandhu Jasminder Kaur,Alsafyani Majed,Alroobaea Roobaea,alsekait Deema mohammed,Margala Martin,Chakrabarti Prasun

Abstract

Diabetes mellitus is a metabolic syndrome affecting millions of people worldwide. Every year, the rate of occurrence rises drastically. Diabetes-related problems across several vital organs of the body can be fatal if left untreated. Diabetes must be detected early to receive proper treatment, preventing the condition from escalating to severe problems. Tremendous health sciences and biotechnology advancements have resulted in massive data that generated massive Electronic Health Records and clinical information. The exponential increase of electronically gathered information has resulted in more complicated, accurate prediction models that can be updated continuously using machine learning techniques. This research mainly emphasizes discovering the best ensemble model for predicting diabetes. A new multistage ensemble model is proposed for diabetes prediction. In this model, accuracy is predicated on the Pima Indian Diabetes dataset. The accuracy of the proposed ensemble model is compared with the existing machine learning model, and the experimental results demonstrate the performance of the proposed model in terms of higher Precision, f-measure, Recall, and area under the curve.

Publisher

Frontiers Media SA

Subject

Physiology (medical),Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multistage transfer learning for medical images;Artificial Intelligence Review;2024-08-06

2. Web-Interfaced Diagnosis System of Diabetes Prediction Using Machine Learning Algorithms;2024 International Conference on Smart Systems for applications in Electrical Sciences (ICSSES);2024-05-03

3. Clinical applications of artificial intelligence in diabetes management: A bibliometric analysis and comprehensive review;Informatics in Medicine Unlocked;2024

4. Exploring the potential of machine learning to design antidiabetic molecules: a comprehensive study with experimental validation;Journal of Biomolecular Structure and Dynamics;2023-11-08

5. Comparative Study of Machine Learning Models for Early Gestational Diabetes Mellitus;2023 International Conference on Circuit Power and Computing Technologies (ICCPCT);2023-08-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3