Behavioral mechanisms underlying trait-mediated survival in a coral reef fish

Author:

Rankin Tauna L.,Cowen Madeline C.,Kandlikar Gaurav S.,Shulzitski Kathryn,Sponaugle Su

Abstract

Fast growth and large size generally increase survivorship in organisms with indeterminate growth. These traits frequently covary, but where they do not, trade-offs often exist in the behavioral choices of organisms. Juvenile bicolor damselfish Stegastes partitus that settle on coral reefs at larger sizes generally experience enhanced survivorship but have slower juvenile growth rates. We hypothesized that differences in behavior may mediate this trade-off. To test whether it is trait-related behaviors or the traits themselves that enhance early survival, we combined individual behavioral observations with otolith (ear stone)-based daily growth measurements for juvenile S. partitus in the Florida Keys. Foraging, sheltering, and chasing behaviors of 256 fish were measured during 5 different months (2008–2009), and patterns of differential survival were similar to those from a 6-year (2003–2008) recruitment time series. We found a trade-off between sheltering and foraging that significantly explained patterns in size-at-settlement: damselfish that settled at larger sizes spent less time sheltered and more time feeding high in the water column. Juvenile growth rates were unrelated to any of the sheltering–foraging behaviors but instead were inversely related to adult conspecific density. Damselfish that settled near higher densities of conspecifics were subjected to increased territorial chasing. Chasing intensity interacted with settlement size such that large juveniles who were chased more frequently exhibited slower growth rates, whereas smaller settlers did not experience this energetic cost. Thus, the dominant survival strategy of S. partitus is to settle at a large size and spend more time foraging high in the water column while dodging conspecifics at an energetic cost to their growth rates. Size-at-settlement is determined during the larval period and after settlement, this trait is key to subsequent behaviors and the strength of trait-mediated survival. Understanding how somatic growth, body size, and survival are intertwined in early life is necessary to help explain population dynamics.

Publisher

Frontiers Media SA

Reference79 articles.

1. Interactions between predators and prey;Endler,1991

2. Size-selective mortality in the juvenile stage of teleost fishes: a review;Sogard;Bull Mar Sci.,1997

3. “Mortality” in fishery science: the unique contributions of early life stages;Houde,2002

4. A review of size dependent survival during pre-recruit stages of fishes in relation to recruitment;Anderson;J NW Atlantic Fish Sci.,1988

5. Life in the fast lane: revisiting the fast growth – high survival paradigm during the early life stages of fishes;Robert;Fish Fish,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3