An integration engineering framework for machine learning in healthcare

Author:

Assadi Azadeh,Laussen Peter C.,Goodwin Andrew J.,Goodfellow Sebastian,Dixon William,Greer Robert W.,Jegatheeswaran Anusha,Singh Devin,McCradden Melissa,Gallant Sara N.,Goldenberg Anna,Eytan Danny,Mazwi Mjaye L.

Abstract

Background and ObjectivesMachine Learning offers opportunities to improve patient outcomes, team performance, and reduce healthcare costs. Yet only a small fraction of all Machine Learning models for health care have been successfully integrated into the clinical space. There are no current guidelines for clinical model integration, leading to waste, unnecessary costs, patient harm, and decreases in efficiency when improperly implemented. Systems engineering is widely used in industry to achieve an integrated system of systems through an interprofessional collaborative approach to system design, development, and integration. We propose a framework based on systems engineering to guide the development and integration of Machine Learning models in healthcare.MethodsApplied systems engineering, software engineering and health care Machine Learning software development practices were reviewed and critically appraised to establish an understanding of limitations and challenges within these domains. Principles of systems engineering were used to develop solutions to address the identified problems. The framework was then harmonized with the Machine Learning software development process to create a systems engineering-based Machine Learning software development approach in the healthcare domain.ResultsWe present an integration framework for healthcare Artificial Intelligence that considers the entirety of this system of systems. Our proposed framework utilizes a combined software and integration engineering approach and consists of four phases: (1) Inception, (2) Preparation, (3) Development, and (4) Integration. During each phase, we present specific elements for consideration in each of the three domains of integration: The Human, The Technical System, and The Environment. There are also elements that are considered in the interactions between these domains.ConclusionClinical models are technical systems that need to be integrated into the existing system of systems in health care. A systems engineering approach to integration ensures appropriate elements are considered at each stage of model design to facilitate model integration. Our proposed framework is based on principles of systems engineering and can serve as a guide for model development, increasing the likelihood of successful Machine Learning translation and integration.

Publisher

Frontiers Media SA

Subject

General Engineering

Reference47 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning Operations in Health Care: A Scoping Review;Mayo Clinic Proceedings: Digital Health;2024-09

2. Lessons for Approaching Implementation of AI Systems in Clinical Settings;2024 IEEE 12th International Conference on Healthcare Informatics (ICHI);2024-06-03

3. Artificial intelligent systems in the development of assisted reproductive technologies;Russian Bulletin of Obstetrician-Gynecologist;2024

4. A framework for integrating artificial intelligence for clinical care with continuous therapeutic monitoring;Nature Biomedical Engineering;2023-11-06

5. Implementation frameworks for end-to-end clinical AI: derivation of the SALIENT framework;Journal of the American Medical Informatics Association;2023-05-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3