Author:
Nassajpour Marjan,Shuqair Mustafa,Rosenfeld Amie,Tolea Magdalena I.,Galvin James E.,Ghoraani Behnaz
Abstract
Accurate balance assessment is important in healthcare for identifying and managing conditions affecting stability and coordination. It plays a key role in preventing falls, understanding movement disorders, and designing appropriate therapeutic interventions across various age groups and medical conditions. However, traditional balance assessment methods often suffer from subjectivity, lack of comprehensive balance assessments and remote assessment capabilities, and reliance on specialized equipment and expert analysis. In response to these challenges, our study introduces an innovative approach for estimating scores on the Modified Clinical Test of Sensory Interaction on Balance (m-CTSIB). Utilizing wearable sensors and advanced machine learning algorithms, we offer an objective, accessible, and efficient method for balance assessment. We collected comprehensive movement data from 34 participants under four different sensory conditions using an array of inertial measurement unit (IMU) sensors coupled with a specialized system to evaluate ground truth m-CTSIB balance scores for our analysis. This data was then preprocessed, and an extensive array of features was extracted for analysis. To estimate the m-CTSIB scores, we applied Multiple Linear Regression (MLR), Support Vector Regression (SVR), and XGBOOST algorithms. Our subject-wise Leave-One-Out and 5-Fold cross-validation analysis demonstrated high accuracy and a strong correlation with ground truth balance scores, validating the effectiveness and reliability of our approach. Key insights were gained regarding the significance of specific movements, feature selection, and sensor placement in balance estimation. Notably, the XGBOOST model, utilizing the lumbar sensor data, achieved outstanding results in both methods, with Leave-One-Out cross-validation showing a correlation of 0.96 and a Mean Absolute Error (MAE) of 0.23 and 5-fold cross-validation showing comparable results with a correlation of 0.92 and an MAE of 0.23, confirming the model’s consistent performance. This finding underlines the potential of our method to revolutionize balance assessment practices, particularly in settings where traditional methods are impractical or inaccessible.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献