Is Speech the New Blood? Recent Progress in AI-Based Disease Detection From Audio in a Nutshell

Author:

Milling Manuel,Pokorny Florian B.,Bartl-Pokorny Katrin D.,Schuller Björn W.

Abstract

In recent years, advancements in the field of artificial intelligence (AI) have impacted several areas of research and application. Besides more prominent examples like self-driving cars or media consumption algorithms, AI-based systems have further started to gain more and more popularity in the health care sector, however whilst being restrained by high requirements for accuracy, robustness, and explainability. Health-oriented AI research as a sub-field of digital health investigates a plethora of human-centered modalities. In this article, we address recent advances in the so far understudied but highly promising audio domain with a particular focus on speech data and present corresponding state-of-the-art technologies. Moreover, we give an excerpt of recent studies on the automatic audio-based detection of diseases ranging from acute and chronic respiratory diseases via psychiatric disorders to developmental disorders and neurodegenerative disorders. Our selection of presented literature shows that the recent success of deep learning methods in other fields of AI also more and more translates to the field of digital health, albeit expert-designed feature extractors and classical ML methodologies are still prominently used. Limiting factors, especially for speech-based disease detection systems, are related to the amount and diversity of available data, e. g., the number of patients and healthy controls as well as the underlying distribution of age, languages, and cultures. Finally, we contextualize and outline application scenarios of speech-based disease detection systems as supportive tools for health-care professionals under ethical consideration of privacy protection and faulty prediction.

Funder

Bayerisches Staatsministerium für Wissenschaft, Forschung und Kunst

Horizon 2020

Publisher

Frontiers Media SA

Subject

General Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3