Fairness in the prediction of acute postoperative pain using machine learning models

Author:

Davoudi Anis,Sajdeya Ruba,Ison Ron,Hagen Jennifer,Rashidi Parisa,Price Catherine C.,Tighe Patrick J.

Abstract

IntroductionOverall performance of machine learning-based prediction models is promising; however, their generalizability and fairness must be vigorously investigated to ensure they perform sufficiently well for all patients.ObjectiveThis study aimed to evaluate prediction bias in machine learning models used for predicting acute postoperative pain.MethodWe conducted a retrospective review of electronic health records for patients undergoing orthopedic surgery from June 1, 2011, to June 30, 2019, at the University of Florida Health system/Shands Hospital. CatBoost machine learning models were trained for predicting the binary outcome of low (≤4) and high pain (>4). Model biases were assessed against seven protected attributes of age, sex, race, area deprivation index (ADI), speaking language, health literacy, and insurance type. Reweighing of protected attributes was investigated for reducing model bias compared with base models. Fairness metrics of equal opportunity, predictive parity, predictive equality, statistical parity, and overall accuracy equality were examined.ResultsThe final dataset included 14,263 patients [age: 60.72 (16.03) years, 53.87% female, 39.13% low acute postoperative pain]. The machine learning model (area under the curve, 0.71) was biased in terms of age, race, ADI, and insurance type, but not in terms of sex, language, and health literacy. Despite promising overall performance in predicting acute postoperative pain, machine learning-based prediction models may be biased with respect to protected attributes.ConclusionThese findings show the need to evaluate fairness in machine learning models involved in perioperative pain before they are implemented as clinical decision support tools.

Funder

National Natural Science Foundation of China

National Institute of Biomedical Imaging and Bioengineering

National Institute of Neurological Disorders and Stroke

Publisher

Frontiers Media SA

Subject

Health Informatics,Medicine (miscellaneous),Biomedical Engineering,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3