Assessing optimal methods for transferring machine learning models to low-volume and imbalanced clinical datasets: experiences from predicting outcomes of Danish trauma patients

Author:

Millarch Andreas Skov,Bonde Alexander,Bonde Mikkel,Klein Kiril Vadomovic,Folke Fredrik,Rudolph Søren Steemann,Sillesen Martin

Abstract

IntroductionAccurately predicting patient outcomes is crucial for improving healthcare delivery, but large-scale risk prediction models are often developed and tested on specific datasets where clinical parameters and outcomes may not fully reflect local clinical settings. Where this is the case, whether to opt for de-novo training of prediction models on local datasets, direct porting of externally trained models, or a transfer learning approach is not well studied, and constitutes the focus of this study. Using the clinical challenge of predicting mortality and hospital length of stay on a Danish trauma dataset, we hypothesized that a transfer learning approach of models trained on large external datasets would provide optimal prediction results compared to de-novo training on sparse but local datasets or directly porting externally trained models.MethodsUsing an external dataset of trauma patients from the US Trauma Quality Improvement Program (TQIP) and a local dataset aggregated from the Danish Trauma Database (DTD) enriched with Electronic Health Record data, we tested a range of model-level approaches focused on predicting trauma mortality and hospital length of stay on DTD data. Modeling approaches included de-novo training of models on DTD data, direct porting of models trained on TQIP data to the DTD, and a transfer learning approach by training a model on TQIP data with subsequent transfer and retraining on DTD data. Furthermore, data-level approaches, including mixed dataset training and methods countering imbalanced outcomes (e.g., low mortality rates), were also tested.ResultsUsing a neural network trained on a mixed dataset consisting of a subset of TQIP and DTD, with class weighting and transfer learning (retraining on DTD), we achieved excellent results in predicting mortality, with a ROC-AUC of 0.988 and an F2-score of 0.866. The best-performing models for predicting long-term hospitalization were trained only on local data, achieving an ROC-AUC of 0.890 and an F1-score of 0.897, although only marginally better than alternative approaches.ConclusionOur results suggest that when assessing the optimal modeling approach, it is important to have domain knowledge of how incidence rates and workflows compare between hospital systems and datasets where models are trained. Including data from other health-care systems is particularly beneficial when outcomes are suffering from class imbalance and low incidence. Scenarios where outcomes are not directly comparable are best addressed through either de-novo local training or a transfer learning approach.

Publisher

Frontiers Media SA

Subject

Health Informatics,Medicine (miscellaneous),Biomedical Engineering,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3