Accuracy, concurrent validity, and test–retest reliability of pressure-based insoles for gait measurement in chronic stroke patients

Author:

Neumann Saskia,Bauer Christoph M.,Nastasi Luca,Läderach Julia,Thürlimann Eva,Schwarz Anne,Held Jeremia P. O.,Easthope Chris A.

Abstract

IntroductionWearables are potentially valuable tools for understanding mobility behavior in individuals with neurological disorders and how it changes depending on health status, such as after rehabilitation. However, the accurate detection of gait events, which are crucial for the evaluation of gait performance and quality, is challenging due to highly individual-specific patterns that also vary greatly in movement and speed, especially after stroke. Therefore, the purpose of this study was to assess the accuracy, concurrent validity, and test–retest reliability of a commercially available insole system in the detection of gait events and the calculation of stance duration in individuals with chronic stroke.MethodsPressure insole data were collected from 17 individuals with chronic stroke during two measurement blocks, each comprising three 10-min walking tests conducted in a clinical setting. The gait assessments were recorded with a video camera that served as a ground truth, and pressure insoles as an experimental system. We compared the number of gait events and stance durations between systems.Results and discussionOver all 3,820 gait events, 90.86% were correctly identified by the insole system. Recall values ranged from 0.994 to 1, with a precision of 1 for all measurements. The F1 score ranged from 0.997 to 1. Excellent absolute agreement (Intraclass correlation coefficient, ICC = 0.874) was observed for the calculation of the stance duration, with a slightly longer stance duration recorded by the insole system (difference of −0.01 s). Bland–Altmann analysis indicated limits of agreement of 0.33 s that were robust to changes in walking speed. This consistency makes the system well-suited for individuals post-stroke. The test–retest reliability between measurement timepoints T1 and T2 was excellent (ICC = 0.928). The mean difference in stance duration between T1 and T2 was 0.03 s. We conclude that the insole system is valid for use in a clinical setting to quantitatively assess continuous walking in individuals with stroke.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3