Enhanced neurologic concept recognition using a named entity recognition model based on transformers

Author:

Azizi Sima,Hier Daniel B.,Wunsch II Donald C.

Abstract

Although deep learning has been applied to the recognition of diseases and drugs in electronic health records and the biomedical literature, relatively little study has been devoted to the utility of deep learning for the recognition of signs and symptoms. The recognition of signs and symptoms is critical to the success of deep phenotyping and precision medicine. We have developed a named entity recognition model that uses deep learning to identify text spans containing neurological signs and symptoms and then maps these text spans to the clinical concepts of a neuro-ontology. We compared a model based on convolutional neural networks to one based on bidirectional encoder representation from transformers. Models were evaluated for accuracy of text span identification on three text corpora: physician notes from an electronic health record, case histories from neurologic textbooks, and clinical synopses from an online database of genetic diseases. Both models performed best on the professionally-written clinical synopses and worst on the physician-written clinical notes. Both models performed better when signs and symptoms were represented as shorter text spans. Consistent with prior studies that examined the recognition of diseases and drugs, the model based on bidirectional encoder representations from transformers outperformed the model based on convolutional neural networks for recognizing signs and symptoms. Recall for signs and symptoms ranged from 59.5% to 82.0% and precision ranged from 61.7% to 80.4%. With further advances in NLP, fully automated recognition of signs and symptoms in electronic health records and the medical literature should be feasible.

Publisher

Frontiers Media SA

Subject

Health Informatics,Medicine (miscellaneous),Biomedical Engineering,Computer Science Applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3