Development and feasibility assessment of a virtual reality-based aerobic exercise program with real-time pulse rate monitoring on hemodynamic and arterial stiffness in healthy people: a pilot study

Author:

Yuenyongchaiwat Kornanong,Sermsinsathong Natsinee,Songsorn Preeyaphorn,Charususin Noppawan,Buranapuntalug Sasipa,Buekban Chatchai,Thanawattano Chusak

Abstract

IntroductionVirtual reality (VR) exercises are reportedly beneficial as a physical activity tool for health promotion and rehabilitation, and can also help individuals exercise under professional supervision. We developed and investigated the potential feasibility of a VR-based aerobic exercise program using the XBOX ONE console and Kinect sensor with real-time pulse rate monitoring. The VR setting consisted of two-dimensional (2D) environments via computer, laptop, or television screens. In addition, the study investigated the potential feasibility of the VR-based exercise program on hemodynamic response and arterial stiffness in healthy participants of various ages.MethodsHealthy participants (n = 30) aged > 18 years were enrolled in the VR exercise-based program. All participants were required to wear a polar heart rate (HR) monitor set for moderate-intensity exercise, targeting 40%–59% of their HR reserve. Hemodynamic and arterial stiffness (pulse wave velocity) were noninvasively measured. The Borg scale rate of perceived exertion (RPE) was also assessed.ResultsFollowing a VR-guided exercise routine, all participants performed moderate-intensity exercise with no adverse health outcomes during or after the exercise. The effects of VR-based aerobic exercise extended beyond enhanced central hemodynamic and arterial stiffness. However, neither hemodynamic nor arterial stiffness showed significant differences before and after the VR exercise, except for a higher RPE response following the exercise program.ConclusionVR-based aerobic exercise with pulse rate monitoring is a promising physical activity tool to induce physiological changes and impact dyspnea scales and is also feasible for administration to healthy populations.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3