The silent trial - the bridge between bench-to-bedside clinical AI applications

Author:

Kwong Jethro C. C.,Erdman Lauren,Khondker Adree,Skreta Marta,Goldenberg Anna,McCradden Melissa D.,Lorenzo Armando J.,Rickard Mandy

Abstract

As more artificial intelligence (AI) applications are integrated into healthcare, there is an urgent need for standardization and quality-control measures to ensure a safe and successful transition of these novel tools into clinical practice. We describe the role of the silent trial, which evaluates an AI model on prospective patients in real-time, while the end-users (i.e., clinicians) are blinded to predictions such that they do not influence clinical decision-making. We present our experience in evaluating a previously developed AI model to predict obstructive hydronephrosis in infants using the silent trial. Although the initial model performed poorly on the silent trial dataset (AUC 0.90 to 0.50), the model was refined by exploring issues related to dataset drift, bias, feasibility, and stakeholder attitudes. Specifically, we found a shift in distribution of age, laterality of obstructed kidneys, and change in imaging format. After correction of these issues, model performance improved and remained robust across two independent silent trial datasets (AUC 0.85–0.91). Furthermore, a gap in patient knowledge on how the AI model would be used to augment their care was identified. These concerns helped inform the patient-centered design for the user-interface of the final AI model. Overall, the silent trial serves as an essential bridge between initial model development and clinical trials assessment to evaluate the safety, reliability, and feasibility of the AI model in a minimal risk environment. Future clinical AI applications should make efforts to incorporate this important step prior to embarking on a full-scale clinical trial.

Publisher

Frontiers Media SA

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3