Anesthetic-, irrigation- and pain-free dentistry? The case for a femtosecond laser enabled intraoral robotic device

Author:

Rapp Ludovic,Madden Steve,Rode Andrei V.,Walsh Laurence J.,Spallek Heiko,Nguyen Quan,Dau Van,Woodfield Peter,Dao Dzung,Zuaiter Omar,Habeb Alaa,Hirst Timothy R.

Abstract

By leveraging ultrashort pulse laser and micro-electromechanical systems (MEMS) technologies, we are developing a miniaturized intraoral dental robotic device that clamps onto teeth, is remotely controlled, and equipped with a focusing and scanning system to perform efficient, fast, and ultra-precise laser treatments of teeth and dental restorative materials. The device will be supported by a real-time monitoring system for visualization and diagnostic analysis with appropriate digital controls. It will liberate dentists from repetitive manual operations, physical strain and proximity to the patient's oro-pharyngal area that potentially contains infectious agents. The technology will provide patients with high-accuracy, minimally invasive and pain-free treatment. Unlike conventional lasers, femtosecond lasers can ablate all materials without generating heat, thus negating the need for water irrigation, allowing for a clear field of view, and lowering cross-infection hazards. Additionally, dentists can check, analyze, and perform precise cutting of tooth structure with automatic correction, reducing human error. Performing early-stage diagnosis and intervention remotely will be possible through units installed at schools, rural health centers and aged care facilities. Not only can the combination of femtosecond lasers, robotics and MEMS provide practical solutions to dentistry's enduring issues by allowing more precise, efficient, and predictable treatment, but it will also lead to improving the overall access to oral healthcare for communities at large.

Publisher

Frontiers Media SA

Subject

Applied Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3