Methane uptake responses to heavy rainfalls co-regulated by seasonal timing and plant composition in a semiarid grassland

Author:

Zheng Zhenzhen,Wen Fuqi,Li Congjia,Guan Shuntian,Xiong Yunqi,Liu Yuan,Qian Ruyan,Lv Mengbo,Xu Shaorui,Cui Xiaoyong,Wang Yanfen,Hao Yanbin,Li Linfeng

Abstract

Heavy rainfalls caused by global warming are increasing widespread in the future. As the second greenhouse gas, the biological processes of methane (CH4) uptake would be strongly affected by heavy rainfalls. However, how seasonal timing and plant composition affect CH4 uptake in response to heavy rainfalls is largely unknown. Here, we conducted a manipulative experiment to explore the effects of heavy rainfall imposed on middle and late growing season stage on CH4 uptake of constructed steppe communities including graminoid, shrub and their mixture in Inner Mongolia, China. The results of mixed effect model showed that both heavy rainfalls decreased CH4 uptake. Nevertheless, the effect magnitude and the pathways were varied with seasonal timing. Relatively, the late heavy rainfall had larger negative effects. Structural equation model suggested that late heavy rainfall decreased CH4 uptake through decreased diffusivity, pmoA abundance, and NH4+-N content, as products of high soil water content (SWC). However, middle heavy rainfall decreased CH4 uptake only by increasing SWC. Additionally, aboveground biomass (AGB) had negative effects on CH4 uptake under both heavy rainfalls. Additionally, plant composition not only affected CH4 uptake but also regulated CH4 uptake in response to heavy rainfalls. Late heavy rainfall had less negative effect on CH4 uptake in graminoid community than in other two communities, in coincidence with less reduction in NH4+-N content and less increase in SWC and AGB. In contrast, we did not observe obvious difference in effects of middle heavy rainfall on CH4 uptake across three communities. Our findings demonstrated that magnitude and pathways of heavy rainfall effects on CH4 uptake were strongly co-regulated by seasonal timing and plant composition.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3