An isolated chemolithoautotrophic ecosystem deduced from environmental isotopes: Ayyalon cave (Israel)

Author:

Frumkin Amos,Chipman Ariel D.,Naaman Israel

Abstract

The stable isotopes composition of chemolithoautotrophic cave ecosystems is known to differ from epigenic caves. Here we show that in addition, dead carbon (devoid of 14C), is utilized and transferred throughout this ecosystem, rendering it unsuitable for radiocarbon dating. The connectivity of the Ayyalon Cave ecosystem with the surface is studied, along with its sources of energy and carbon, as well as the interconnections between its constituents. We use isotopic evidence to show that its ancient resilient ecosystem is based on an underground food web depending on rich biomass production by chemolithoautotrophic nutrient supplies, detached from surface photosynthesis. Carbon isotopic values indicate that: (1) the microbial biota use bicarbonate from the groundwater (23.34 pMC [% of modern carbon]) rather than the atmospheric CO2 above the water (71.36 pMC); (2) the depleted 14C signal is transferred through the entire ecosystem, indicating that the ecosystem is well-adapted and based on the cave biofilm which is in turn based on groundwater-dissolved inorganic carbon. Incubation of Ayyalon biofilm with 14C-labelled bicarbonate indicates uptake of the radio-labeled bicarbonate by sulfur-oxidizing proteobacteria Beggiatoa, suggesting that these sulfur-oxidizing microorganisms use the water-dissolved inorganic carbon for chemolithoautotrophic carbon fixation. Organic matter in the cave is much lighter in its stable nitrogen and carbon isotopes compared with respective surface values, as expected in chemolithoautotrophic systems. This evidence may be applicative to subsurface voids of ancient Earth environments and extraterrestrial systems.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3