Deconstructing dams and disease: predictions for salmon disease risk following Klamath River dam removals

Author:

Bartholomew Jerri L.,Alexander Julie D.,Alvarez Justin,Atkinson Stephen D.,Belchik Michael,Bjork Sarah J.,Foott J. Scott,Gonyaw Alex,Hereford Mark E.,Holt Richard A.,McCovey Barry,Som Nicholas A.,Soto Toz,Voss Anne,Williams Thomas H.,Wise Ted G.,Hallett Sascha L.

Abstract

The health of fish populations and the river systems they inhabit have broad ecological, cultural, recreational, and economic relevance. This is exemplified by the iconic anadromous salmonid fishes native to the West Coast of North America. Salmon populations have been constrained since the mid nineteenth century by dam construction and water reallocation. In the Klamath River (Oregon and California, USA), a series of dams built in the early-mid 20th century cut the basin in two and blocked anadromous fish access to more than 600 river kilometers. This dramatic loss of habitat, coupled with infectious diseases and resulting epizootics, have impacted the wellbeing of these salmonid populations. In 2023-2024, the Klamath River will undergo the largest river restoration project in US history. Removal of the four lowermost dams will cause profound physical changes to the river, including flow, water temperature, and channel geomorphology. The dam removals will reconnect the lower and upper portions of the basin, and provide fish passage after a century of segregation. Reestablishment of upstream and downstream fish movements will also alter the occupancy and abundance of the salmonid hosts and their pathogens. The increased habitat availability and longer migration routes will increase duration of pathogen exposure and potential impacts on juvenile survival and adult pre-spawn mortality. However, restoration of more natural flow and sediment regimes will decrease overall fish disease risk by disrupting complex parasite life cycles. To better understand these multifarious, competing factors, we review the salmonid species in the Klamath River, and provide an overview of their historical pathogen challenges and associated diseases and use this as a framework to predict the effects of dam removals on disease dynamics. Our review and predictions are a synthesis of expertise from tribal biologists, fish health specialists and fish biologists, many of whom have lived and worked on the Klamath River for decades. We conclude with recommendations for expansion of current pathogen monitoring and research efforts to measure changes in host-pathogen dynamics basin-wide.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3