Abstract
Recent theoretical studies have identified chaotic dynamics in eco-evolutionary models. Yet, empirical evidence for eco-evolutionary chaos in natural ecosystems is lacking. In this study, we combine analyses of empirical data and an eco-evolutionary model to uncover chaotic dynamics of body length in a fish population (northeast Arctic cod: Gadus morhua). Consistent with chaotic attractors, the largest Lyapunov exponent (LE) of empirical data is positive, and approximately matches the LE of the model calculation, thus suggesting the potential for chaotic dynamics in this fish population. We also find that the autocorrelation function (ACF) of both empirical data and eco-evolutionary model shows a similar lag of approximately 7 years. Our combined analyses of natural time series and mathematical models suggest that chaotic dynamics of a phenotypic trait may be driven by trait evolution. This finding supports a growing theory that eco-evolutionary feedbacks can produce chaotic dynamics.
Funder
National Natural Science Foundation of China
Subject
Ecology,Ecology, Evolution, Behavior and Systematics