Vegetation Response to Holocene Climate Change in the Qinling Mountains in the Temperate–Subtropical Transition Zone of Central–East China

Author:

Zhang Yao,Cui Qiaoyu,Huang Youliang,Wu Duo,Zhou Aifeng

Abstract

Global warming is having a profound influence on vegetation and biodiversity patterns, especially in alpine areas and high latitudes. The Qinling Mountain range is located in the transition zone between the temperate and subtropical ecosystems of central–east China and thus the vegetation of the area is diverse. Understanding the long-term interactions between plant diversity and climate change can potentially provide a reference for future landscape management and biodiversity conservation strategies in the Qinling Mountains region. Here, we use a pollen record from the Holocene sediments of Daye Lake, on Mount Taibai in the Qingling Mountains, to study regional vegetation changes based on biomes reconstruction and diversity analysis. Temperature and precipitation records from sites close to Daye Lake are used to provide environmental background to help determine the vegetation response to climate change. The results indicate that climate change was the main factor influencing vegetation and palynological diversity in the Qinling Mountains during the Holocene. The cold and dry climate at the beginning of the early Holocene (11,700–10,700 cal yr BP) resulted in a low abundance and uneven distribution of regional vegetation types, with the dominance of coniferous forest. During the early Holocene (10,700–7,000 cal yr BP), temperate deciduous broadleaf forest expanded, palynological diversity and evenness increased, indicating that the warm and humid climate promoted vegetation growth. In the middle Holocene (7,000–3,000 cal yr BP), the climate became slightly drier but a relatively warm environment supported the continued increase in palynological diversity. After ∼3,000 cal yr BP, palynological diversity and the evenness index commenced a decreasing trend, in agreement with the decreased temperature and precipitation in the Qinling Mountains. It’s noteworthy that human activity at this time had a potential influence on the vegetation. During the past few centuries, however, palynological diversity has increased along with the global temperature, and therefore it is possible that in the short-term ongoing climatic warming will promote vegetation development and palynological diversity in the area without human interference.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Reference113 articles.

1. Picea–Abies forests in the highlands of Northern Alberta.;Achuff;Vegetatio,1977

2. A Summary of the Archaeology of the Three Kingdoms, Sui, Tang, Song, Yuan, Ming and Qing Dynasties of Shanxi province from 2008 to 2017 years.;Archaeol. Cult. Relics,2018

3. Has the Earth’s sixth mass extinction already arrived?;Barnosky;Nature,2011

4. Climatic response surfaces from pollen data for some Eastern North American Taxa.;Bartlein;J. Biogeogr.,1986

5. Does pollen–assemblage richness reflect floristic richness? A review of recent developments and future challenges.;Birks;Rev. Palaeobot. Palynol.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3