Carbon footprint and embodied carbon emission transfer network obtained using the multi–regional input–output model and social network analysis method: A case of the Hanjiang River basin, China

Author:

Zhu Kai,Liu Qicheng,Xiong Xiao,Zhang Yuan,Wang Min,Liu Hai

Abstract

China is the largest carbon emitter in the world; thus, reducing carbon emissions while maintaining economic growth has become an important issue. Within the context of carbon neutrality strategies, calculation of the carbon footprint and embodied carbon transfer can help policymakers formulate reasonable carbon reduction plans. The multi–regional input–output (MRIO) model can clarify carbon flow pathways between regions, and social network analysis (SNA) can comprehensively evaluate the different positions of individual sectors. Combining these two approaches, the specific characteristics of carbon emissions in complex production and trade relationships can be analyzed. China has become the world’s top total carbon emitter, and the Hanjiang River basin (HJRB) constitutes an important economic link between the developed and less developed regions of China. Studying carbon emissions in the HJRB can provide a reference for other, similar regions and is vital for the realization of China’s carbon emission reduction targets. This paper examines the carbon footprint and embodied carbon emission transfer among three provinces and 12 sectors in the HJRB during different periods and identifies the key industries in the carbon transfer process. The results indicate that (1) the total carbon footprint in the HJRB exhibits an increasing trend. Energy-based Shaanxi Province exhibits the highest growth rate of the carbon footprint, agriculture-based Henan Province shows a decreasing trend, and consumption-based Hubei Province displays the lowest carbon footprint intensity. (2) There are differences in the carbon emission coefficient and final consumption rate among various sectors; construction, metal processing and metal and non-metallic products, processing and manufacturing of petroleum, coking, nuclear fuel, chemical products, and other services are the sectors accounting for a high proportion of emissions. (3) The more obvious the supply relationship is, the higher the flow of embodied carbon emission transfer between sectors. (4) Energy-based regions transfer large amounts of fossil energy, electricity, steel and coal resources to developed regions and simultaneously assume more of the carbon reduction pressure imposed on developed regions. (5) The key industries within the embodied carbon emission transfer network notably control the carbon emissions of other industries and can provide breakthroughs to achieve challenging carbon emission reduction targets.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3