Author:
Cameron Matthew D.,Joly Kyle,Breed Greg A.,Mulder Christa P. H.,Kielland Knut
Abstract
A distinguishing characteristic of many migratory animals is their annual return to distinct calving (birthing) areas in the spring, yet the navigational mechanisms employed during migration that result in this pattern are poorly understood. Effective conservation of these species requires reliable delineation of such areas, quantifying the factors that influence their selection, and understanding the underlying mechanisms resulting in use of calving areas. We used barren-ground caribou (Rangifer tarandus granti) as a study species and identified calving sites of the Western Arctic Herd in Alaska using GPS collar data from 2010–2017. We assessed variability in calving areas by comparing spatial delineations across all combinations of years. To understand calving area selection at a landscape scale, we performed a resource selection analysis comparing calving sites to available locations across the herd’s range and incorporated time-varying, remotely sensed metrics of vegetation quality and quantity. We found that whereas calving areas varied from year to year, this annual variation was centered on an area of recurring attraction consistent with previous studies covering the last six decades. Calving sites were characterized by high-quality forage at the average time of calving, but not peak calving that year, and by a narrow range of distinct physiographic factors. Each year, calving sites were located on areas of above-average conditions based on our predictive model. Our findings indicate that the pattern of spring migration for pregnant females was to migrate to areas that consistently provide high-quality forage when averaged across years, and then upon arriving at this calving ground, refine selection using their perception of annually varying conditions that are driven by environmental stochasticity. We suggest that the well-documented and widespread pattern of fidelity to calving grounds by caribou is supportive of a navigational mechanism based on spatial memory at a broad scale to optimize foraging and energy acquisition at a critical life-history stage. The extent to which migrants depend on memory to reach their spring destinations has implications for the adaptability of populations to changing climate and human impacts.
Subject
Ecology,Ecology, Evolution, Behavior and Systematics
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献