The noise is the signal: spatio-temporal variability of production and productivity in high elevation meadows in the Sierra Nevada mountain range of North America

Author:

Klinger Rob,Stephenson Tom,Letchinger James,Stephenson Logan,Jacobs Sarah

Abstract

There are expectations that increasing temperatures will lead to significant changes in structure and function of montane meadows, including greater water stress on vegetation and lowered vegetation production and productivity. We evaluated spatio-temporal dynamics in production and productivity in meadows within the Sierra Nevada mountain range of North America by: (1) compiling Landsat satellite data for the Normalized Difference Vegetation Index (NDVI) across a 37-year period (1985–2021) for 8,095 meadows >2,500 m elevation; then, (2) used state-space models, changepoint analysis, geographically-weighted regression (GWR), and distance-decay analysis (DDA) to: (a) identify meadows with decreasing, increasing or no trends for NDVI; (b) detect meadows with abrupt changes (changepoints) in NDVI; and (c) evaluate variation along gradients of latitude, longitude, and elevation for eight indices of temporal dynamics in annual production (mean growing season NDVI; MGS) and productivity (rate of spring greenup; RSP). Meadows with no long-term change or evidence of increasing NDVI were 2.6x more frequent as those with decreasing NDVI (72% vs. 28%). Abrupt changes in NDVI were detected in 48% of the meadows; they occurred in every year of the study and with no indication that their frequency had changed over time. The intermixing of meadows with different temporal dynamics was a consistent pattern for monthly NDVI and, especially, the eight annual indices of MGS and RSP. The DDA showed temporal dynamics in pairs of meadow within a few 100 m of each other were often as different as those hundreds of kilometers apart. Our findings point strongly toward a great diversity of temporal dynamics in meadow production and productivity in the SNV. The heterogeneity in spatial patterns indicated that production and productivity of meadow vegetation is being driven by interplay among climatic, physiographic and biotic factors at basin and meadow scales. Thus, when evaluating spatio-temporal dynamics in condition for many high elevation meadow systems, what might often be considered “noise” may provide greater insight than a “signal” embedded within a large amount of variability.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3