Analysis of sediment from an irrigation dam in an agricultural valley impacted by the mega-drought in central Chile

Author:

Jaque Jennery,Melo Pinochet Naveska,Aránguiz-Acuña Adriana,Pizarro Héctor

Abstract

Central Chile has been affected since 2010 by an increasing mega-drought accompanied by a historically low precipitation rate, as a probable consequence of climate change. Additionally, the increasing pressure exerted by the withdrawals of human activities, such as agriculture and metal mining, promotes conditions of hydric scarcity. Despite this intensive use of the watersheds and the sustained and increasing aridity, it has not been explored whether an artificial sedimentary record can trace these changes in the agricultural valleys of the region. To unravel and evaluate the recent environmental/climatic variability, the effects of the mega-drought that has pertained since 2010, extractivist pressures on a Mediterranean valley in central Chile, and sediment records were obtained from an irrigation dam and studied through a multi-proxy analysis. The dam was built and has been in operation since 1975 and is located in the Aconcagua River Valley, Valparaíso, Chile. Magnetic properties, carbon content, mineral composition, and metal content were analyzed from sediments of a 120 cm long core. Changes in vegetation cover from 1990 to 2020 were analyzed through NDVI filters. Horizons associated with drier conditions were observed in the upper zone of the core, which corresponded from the year 2001 to the present, assuming a constant sedimentation rate of 2.72 cm·yr−1. Additionally, the characteristic alternation of dry–wet conditions was observed in the deep horizon of the dam sediments. The concentrations of Cu, Pb, Al, and As have increased over the years, while the concentration of Mo has decreased. Some of these elements are associated with copper mining, existing in the valley. Analysis of Landsat images from the year 2000 to the present has identified a significant decrease in vegetation cover associated with dry/wet periods, which may be related to cycles of El Niño/La Niña events. Although not all the proxies analyzed were sensitive enough to detect changes at the desired resolution, since the dam is very recent, the results shed light on the effects of the interaction between industrial activities and the decrease of water availability in multiple-use watersheds, suggesting variations in metals concentrations and changes in water availability, probably promoted by anthropic activities, climatic events, and increasing aridity in the Aconcagua River Valley.

Funder

Fondo Nacional de Innovación y Desarrollo Científico–Tecnológico

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3