An artificial intelligence-based assessment of soil erosion probability indices and contributing factors in the Abha-Khamis watershed, Saudi Arabia

Author:

Alqadhi Saeed,Mallick Javed,Talukdar Swapan,Alkahtani Meshel

Abstract

Soil erosion is a major problem in arid regions, including the Abha-Khamis watershed in Saudi Arabia. This research aimed to identify the soil erosional probability using various soil erodibility indices, including clay ratio (CR), modified clay ratio (MCR), Critical Level of Soil Organic Matter (CLOM), and principle component analysis based soil erodibility index (SEI). To achieve these objectives, the study used t-tests and an artificial neural network (ANN) model to identify the best SEI model for soil erosion management. The performance of the models were then evaluated using R2, Root Mean Squared Error (RMSE), Mean Squared Error (MSE), and Mean Absolute Error (MAE), with CLOM identified as the best model for predicting soil erodibility. Additionally, the study used Shapley additive explanations (SHAP) values to identify influential parameters for soil erosion, including sand, clay, silt, soil organic carbon (SOC), moisture, and void ratio. This information can help to develop management strategies oriented to these parameters, which will help prevent soil erosion. The research showed notable distinctions between CR and CLOM, where the 25–27% contribution explained over 89% of the overall diversity. The MCR indicated that 70% of the study area had low erodibility, while 20% had moderate and 10% had high erodibility. CLOM showed a range from low to high erodibility, with 40% of soil showing low CLOM, 40% moderate, and 20% high. Based on the T-test results, CR is significantly different from CLOM, MCR, and principal component analysis (PCA), while CLOM is significantly different from MCR and PCA, and MCR is significantly different from PCA. The ANN implementation demonstrated that the CLOM model had the highest accuracy (R2 of 0.95 for training and 0.92 for testing) for predicting soil erodibility, with SOC, sand, moisture, and void ratio being the most important variables. The SHAP analysis confirmed the importance of these variables for each of the four ANN models. This research provides valuable information for soil erosion management in arid regions. The identification of soil erosional probability and influential parameters will help to develop effective management strategies to prevent soil erosion and promote agricultural production. This research can be used by policymakers and stakeholders to make informed decisions to manage and prevent soil erosion.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3