Multi-Scale Ecological Connectivity Dynamics Associated With Hydropower Station: A Case Study in the Lancang River Valley

Author:

Liu Shiliang,Wang FangFang,Deng Li,Dong Yuhong,Liu Yixuan

Abstract

Dam construction is a major threat to terrestrial ecological processes that exhibit spatial variation. As an effective indicator of species movements at large scales, the dynamics of forest landscape connectivity for the dispersal abilities of local species such as primates both upstream and downstream of the Manwan hydropower station were compared in three periods: before, during, and after dam construction (in 1974, 1988, and 2004, respectively). The equivalent connected area (ECA) index which was modified from the probability of connectivity (PC) index based on the graph theory was applied in this study. We used this method to analyze the spatial and temporal changes in the overall forest landscape connectivity due to dam construction. The results showed that forest connectivity decreased after dam construction. The forest connectivity upstream was much greater than that downstream in 1974 but was lower in 1988 and 2004. The importance of connectivity increased with increasing dispersal distance. Only 8, 12, and 18% of forest patches of small area exhibited changes in 1974, 1988, and 2004, respectively. Most of the large habitat patches (i.e., those with dECA values >50%) remained stable, and the greatest patch changes were found at a dispersal distance of 400 m in all three periods. These large forest patch changes often occurred near the boundary of the study area. The Betweenness Centrality indicator, which identifies patches as stepping stones while accounting for ecological processes and biological flows at a larger scale, indicated that some habitat patches near Manwan Dam acted as stepping stones in maintaining the forest connectivity. Furthermore, rank correlations between the forest patch area and the three dPC (intra, flux, connector) fractions indicated that the dPCflux indicator can be used to measure the prioritization of habitat patches.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3