Hydrological and climate intensification induces conservative behavior in the Hydrochorea corymbosa xylem production in a Central Amazon floodplain forest

Author:

de Sá Priscila Amaral,Schöngart Jochen,Wittmann Florian,Piedade Maria Teresa Fernandez,Tomazello-Filho Mario,Oliveira Rafael S.,Horna Viviana,Parolin Pia,Durgante Flavia Machado

Abstract

IntroductionTrees from flooded forests have to adjust their xylem hydraulic structure to face the annual flooding and the climatic conditions of the atmosphere. Usually, this adjustment of anatomical tissues in the tropics is driven by drought events inducing conservative behavior and can be recorded annually in tree rings. However, how the flood pulse and the climatic conditions influence the xylem hydraulic structure in floodplain trees is unknown.MethodsTo fill this gap, we explore if flooded periods and monthly climate variation affect the annual tree growth and xylem anatomy structure for the tree species Hydrochorea corymbosa (Fabaceae) from the várzea flooded forest in the Central Amazon. We developed a 41-year ring width chronology (1971–2018) and a 30-year time series of xylem anatomy parameters (1988–2018) as mean hydraulic vessel diameter (Dh), vessel frequency (VF), and parenchyma quantity (PQ). We correlated the series with monthly hydrological and climatic data.ResultsThe hydrological regime did not correlate with annual tree growth in that species as we previously expected but showed correlations with the xylem anatomical structure. High flood levels during the end of the flooding period induced conservative patterns of the anatomical structure, with a negative correlation with Dh (rho June = −0.40, p < 0.05) and a positive correlation with the PQ (rho September/October = 0.42, p < 0.05). These responses show that these trees are responding to flooding similar to the tree responses to drought. Regarding the climatic variation, the annual tree growth showed a negative correlation with the vapor pressure deficit (VPD), after the second half of the flooded period with the strongest correlation happening during the non-flooded period (rho December = −0.66, p < 0. 01). These conservative patterns in tree behavior also happened when the maximum temperature negatively affected the vessel diameter (rho September = −0.42, p < 0.05).DiscussionIn that case, we recognized two different moments that the environment is inducing conservative patterns in the xylem structure of those trees: 1) increasing the flood levels and 2) the high evaporative demand during the non-flooded period. In this way, the intensification of the hydrological regime, as well as the strong drought conditions during the non-flooded periods, can be a risk for H. corymbosa in the Central Amazonian floodplains.

Funder

Bundesministerium für Bildung und Forschung

Fundação de Amparo à Pesquisa do Estado do Amazonas

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa do Estado de São Paulo

Financiadora de Estudos e Projetos

Karlsruhe Institute of Technology

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3