Can urban green space water planes be quantified? A new way of thinking about landscape planning and design

Author:

Wu Haoqi,Chen Zhenan,Yan Jun,Wu Hang

Abstract

Water bodies in urban green spaces are important parts of urban landscapes, and their planar shapes are an important factor governing the creation of waterfront landscapes. To improve the aesthetics and functionality of water bodies, this paper takes Nanjing as an example for analysis to investigate whether it is possible to scientifically quantify the planar shape of urban green space water bodies. First, water bodies meeting the conditions within the municipal area were selected as the study objects for classification. Second, in view of the lack of theoretical and innovative problems in previous studies, the use of fractal theory was proposed to improve the scientificity. Finally, remote sensing data images were used to extract water body planes, and the fractal dimensions were calculated and quantitatively evaluated by coupling the box dimension method with fractal theory. The results show that the fractal dimension could be used as a quantitative parameter to determine the planar morphology of water bodies in urban green spaces, and the fractal dimension value is positively correlated with the complexity of the water body, which can be used for both quantitative assessment of the landscape aesthetics of existing water bodies in urban green spaces and theoretical support for the future design of water planar morphology.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3