Defining Biologically Meaningful Biomes Through Floristic, Functional, and Phylogenetic Data

Author:

Cardoso Domingos,Moonlight Peter W.,Ramos Gustavo,Oatley Graeme,Dudley Christopher,Gagnon Edeline,Queiroz Luciano Paganucci de,Pennington R. Toby,Särkinen Tiina E.

Abstract

While we have largely improved our understanding on what biomes are and their utility in global change ecology, conservation planning, and evolutionary biology is clear, there is no consensus on how biomes should be delimited or mapped. Existing methods emphasize different aspects of biomes, with different strengths and limitations. We introduce a novel approach to biome delimitation and mapping, based upon combining individual regionalizations derived from floristic, functional, and phylogenetic data linked to environmentally trained species distribution models. We define “core Biomes” as areas where independent regionalizations agree and “transition zones” as those whose biome identity is not corroborated by all analyses. We apply this approach to delimiting the neglected Caatinga seasonally dry tropical forest biome in northeast Brazil. We delimit the “core Caatinga” as a smaller and more climatically limited area than previous definitions, and argue it represents a floristically, functionally, and phylogenetically coherent unit within the driest parts of northeast Brazil. “Caatinga transition zones” represent a large and biologically important area, highlighting that ecological and evolutionary processes work across environmental gradients and that biomes are not categorical variables. We discuss the differences among individual regionalizations in an ecological and evolutionary context and the potential limitations and utility of individual and combined biome delimitations. Our integrated ecological and evolutionary definition of the Caatinga and associated transition zones are argued to best describe and map biologically meaningful biomes.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3