Can meteorological data and normalized difference vegetation index be used to quantify soil pH in grasslands?

Author:

Dai Erfu,Zhang Guangyu,Fu Gang,Zha Xinjie

Abstract

Quantifying soil pH at manifold spatio-temporal scales is critical for examining the impacts of global change on soil quality. It is still unclear whether meteorological data and normalized difference vegetation index (NDVI) can be used to quantify soil pH in grasslands. Here, nine methods (i.e., RF: random-forest, GLR: generalized-linear-regression, GBR: generalized-boosted-regression, MLR: multiple-linear-regression, ANN: artificial-neural-network, CIT: conditional-inference-tree, SVM: support-vector-machine, eXGB: eXtreme-gradient-boosting, RRT: recursive-regression-tree) were applied to quantify soil pH. Three independent variables (i.e., AP: annual precipitation, AT: annual temperature, ARad: annual radiation) were used to quantify potential soil pH (pHp), and four independent variables (i.e., AP, AT, ARad and NDVImax: maximum NDVI during growing season) were applied to quantify actual soil pH (pHa). Overall, the developed eXGB models performed the worst (linear regression slope < 0.60; R2 = 0.99; relative deviation ≤ –43.54%; RMSE ≥ 3.14), but developed RF models performed the best (linear regression slope: 0.99–1.01; R2 = 1.00; relative deviation: from –1.26% to 0.65%; RMSE ≤ 0.28). The linear regression slope, R2, absolute value of relative deviation and RMSE between modelled and measured soil pH were 0.96–1.03, 0.99–1.00, ≤ 3.87% and ≤ 0.88 for the other seven methods, respectively. Accordingly, except the developed eXGB approach, the developed other eight methods can have relative greater accuracies in quantifying soil pH. However, the developed RF had the uppermost quantification accuracy for soil pH. Whether or not meteorological data and normalized difference vegetation index can be used to quantify soil pH was dependent on the chosen models. The RF developed by this study can be used to quantify soil pH from measured meteorological data and NDVImax, and may be conducive to scientific studies related to soil quality and degradation (e.g., soil acidification and salinization) at manifold spatial-temporal under future globe change.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3