Control of tea aphids via attracting the parasitic wasp, Aphelinus sp. with synthetic semiochemicals

Author:

Wu Yiqi,Han Shanjie,Wang Mengxin,Zhang Qing-He,Han Baoyu

Abstract

The tea aphid (Toxoptera aurantii Boyer de Fonscolombe) is an important tea plant pest insect worldwide. The parasitoid wasp, Aphelinus sp., is one of the most important natural enemies of the tea aphid in China. Unfortunately, Aphelinus sp. alone cannot effectively control the outbreaks of the aphid under natural conditions. In this study, 27 volatile compounds from tea aphid-injured tea shoots, tea flowers, aphid sex pheromones, or body rinses were selected and tested in Y-tube olfactometer assays to find potential attractants of the parasitoid wasp, Aphelinus sp. Based on the Y-tube assay results, the following three attractant mixtures were formulated and further tested in the field. Attractant-1 (HIPV-based) included trans-2-hexenal (10−6 g/ml), β-ionone (10−6 g/ml), allyl isothiocyanate (10−4 g/ml), trans-2-pentenal (10−2 g/ml), and jasmone (10−2 g/ml) at equal loading volume of their solutions. Attractant-2 (with aphid sex-pheromone and body rinse compounds) included nepetalactone (10−6 g/ml), 2,5-hexanedione (10−4 g/ml), benzaldehyde (10−2 g/ml), eicosane (10−2 g/ml), and heptadecane (10−2 g/ml) at equal loading volume of their solutions. Attractant-3 (partial combination of Attractant-1 and Attractant-2) included nepetalactone (10−4 g/ml), benzaldehyde (10−2 g/ml), jasmone (10−2 g/ml), trans-2-hexenal (10−6 g/ml), eicosane (10−2 g/ml), and heptadecane (10−2 g/ml) at equal loading volume of their solutions. Field trials showed that Attractant-3 was much more attractive to the parasitic wasps than Attractant-1 and Attractant-2. From late August to late September the controlled release of Attractant-3 effectively attracted Aphelinus sp. to parasitize and colonize the aphid populations in the treated tea plantations, resulting in a progressive decrease of the tea aphid abundances/populations in the fall. The continued enhanced parasitism of overwintered aphids by Aphelinus sp. further reduced this population during the next spring tea harvest season. This approach may present an environmentally sound, non-insecticidal control tactic against tea aphids using synthetic semiochemicals.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Reference35 articles.

1. Intraspecific variation in herbivore-induced plant volatiles influences the spatial range of plant-parasitoid interactions;Aartsma;Oikos,2019

2. Seasonal abundance of black citrus aphid Toxoptera aurantii in North-East India: role of temperature;Agarwala;Proc. Indian Natl. Sci. Acad,1995

3. Behavioral responses of Chrysopa septempunctata to synomones of tea plants and sex pheromones of aphids: effectiveness on tea aphid control;Cui;Acta Entomol. Sin,2015

4. Biological studies on tea aphids, Toxoptera aurantii Boyer, and its natural enemy complex;Das;Two Bud,1992

5. Aphids and parasitoids in wheat and nearby canola fields in central Oklahoma;Elliott;Southwest. Entomol,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3