In situ, high-resolution evidence for the release of heavy metals from lake sediments during ice-covered and free periods

Author:

Zhu Xiaoyan,Wu Zhong,Han Xuhang,Yang Zihao,Dong Xiangqian,Yuan Yuxiang,Wang Nannan,Qu Zhi,Wang Chunqing

Abstract

Heavy metal dynamics at the sediment-water interface (SWI) has attracted plenty of attention due to their meticulous depiction for metal sorption-release processes. However, little is known about their concentration, migration and release characteristics underneath the ice, especially at the millimeter scale. Here we investigated dynamics of labile As, Cd, Cu, Mn, Pb and Zn by the diffusive gradients in thin-films (DGT) technique during ice-covered and ice-free periods in the Lake Xingkai basin. The concentrations of metals were relatively high at the SWI and ranged for As: 0.001~13.42 μg L−1, Cd: 0.01~0.45 μg L−1, Cu: 0.001~2.75 μg L−1, Mn: 5.31~2958.29 μg L−1, Pb: 0.06~1.43 μg L−1, and Zn: 2.92~112.96 μg L−1. Particularly, concentration of Mn was extremely higher than other studies, possibly due to diagenetic process. Labile concentrations of heavy metals in January were significantly lower than those in May, suggesting that elevated temperatures lead to the release of heavy metals from the sediment to the overlying water. Based on the Fick’s first law, the diffusive fluxes as a source of Mn (413.82-1163.25 mg·m-2·d-1) and As (3.53 -8.12 mg·m-2·d-1) indicated that heavy metals were released from sediments to the overlying water. While the diffusive fluxes as a sink of Zn (-1.80-(-2.36) mg·m-2·d-1) and Pb (-0.02-(-0.46) mg·m-2·d-1) to sediments. Redundancy Analysis (RDA) revealed that the main factors influencing the heavy metal migration were dissolved oxygen (45.6% of total explanation, P=0.01) in January, and water temperature (52.9%, P=0.006) in May. This study extends theoretical scope for understanding metal migration and release process, and provides valuable suggestions for lake management during the freezing period.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3