The Potential to Encode Detailed Information About Parasites in the Acoustic Signals of Chinese Horseshoe Bats (Rhinolophus sinicus)

Author:

Fan Baozhu,Wang Yujuan,Huang Xiaobin,Zhang Xianzheng,Yang Jinting,Jiang Tinglei

Abstract

Condition-dependent acoustic signals that potentially reveal information about the signaler’s physical or physiological condition are common and important in the animal kingdom. Given the negative effects of parasites on the health and fitness of their hosts, it is reasonable to expect animal acoustic signals to reflect detailed information concerning parasite infection. However, despite previous studies having verified the potential of sexually selected vocalizations to provide information on parasitism based on the correlations between call acoustic properties and parasitism in some animal taxa, less is known about whether acoustic signals used in a non-sexual context also reflect parasite infection especially for highly vocal bats. We thus investigated the relationships between the acoustic properties of distress calls and echolocation pulses and the infestation intensity of gamasid mites and bat flies in Chinese horseshoe bats (Rhinolophus sinicus) to determine whether acoustic signals potentially contain information about parasite infection. We found that bats infected with more gamasid mites uttered significantly shorter echolocation pulses, suggesting that echolocation pulses may contain information on the intensity of mite infection. Additionally, bats infected with more gamasid mites emitted distress calls with narrower bandwidth, while bats with more bat flies emitted calls with longer pause duration. These results suggest that distress calls may not only reflect a signaler’s parasite infection intensity but also may provide information concerning infection with specific parasites. In short, our findings suggest that acoustic signals of bats potentially reflect detailed information about parasite infection.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3