Contrasting Trends of Population Size Change for Two Eurasian Owlet Species—Athene brama and Glaucidium radiatum From South Asia Over the Late Quaternary

Author:

Natesh Meghana,Vinay K. L.,Ghosh Samriddha,Jayapal Rajah,Mukherjee Shomita,Vijay Nagarjun,Robin V. V.

Abstract

Climatic oscillations over the Quaternary have had a lasting impact on species’ distribution, evolutionary history, and genetic composition. Many species show dramatic population size changes coinciding with the last glacial period. However, the extent and direction of change vary across biogeographic regions, species-habitat associations, and species traits. Here we use genomic data to assess population size changes over the late Quaternary using the Pairwise Sequential Markovian Coalescent (PSMC) approach in two Eurasian Owlet species—the Spotted Owlet, Athene brama, and the Jungle Owlet, Glaucidium radiatum. While Spotted Owlets are typically associated with open habitats, Jungle Owlets are found in deciduous forests and scrublands. We find that the effective population size for the Spotted Owlet increased after the Interglacial period till the Last Glacial Maxima and subsequently declined toward the Mid-Holocene. On the other hand, effective population size estimates for the Jungle Owlet increased gradually throughout this period. These observations are in line with climatic niche model-based predictions for range size change for both species from a previous study and suggest that habitat associations at the local scale are important in determining responses to past climatic and vegetational changes. The Spotted Owlet result also aligns well with the expectation of open habitat expansion during the arid Glacial Maxima, whereas for the Jungle Owlet the contrasting expectation does not hold. Therefore, assessing the impacts of glacial history on population trajectories of multiple species with different habitat associations is necessary to understand the impacts of past climate on South Asian taxa.

Funder

Ministry of Environment, Forest and Climate Change

Science and Engineering Research Board

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3