The contribution of seedbank to the green roof plant community dynamics analogous to semi-natural grasslands

Author:

Rivière Lucie,Sellier Alizé,Dutoit Thierry,Vidaller Christel,Buisson Elise,Mahy Grégory

Abstract

Extensive green roofs have been shown to support native biodiversity and plant communities that are analogous to natural or semi-natural habitats such as grasslands. However, little is known about the role of soil seedbanks in the dynamic of extensive green roof plant communities. The purpose of this study was to analyze the seedbank that developed after 4 years of an extensive green roof analog to dry grassland plant community, seeded with 29 species. We aimed to understand the contribution of seedbank to the resilience of vegetation to harsh conditions of the roof and to colonization by surrounding spontaneous species. We monitored the plant species cover in 36 plots during 4 years in June (between 2018 and 2021), and sampled the seedbank in February 2021. Our results showed that the soil seedbank was dominated by transient spontaneous ruderals species, while the standing vegetation was still dominated by seeded grassland species. We found that seeded grassland species had poor seedbank stock, similar to their natural environments. The similarity index between the standing vegetation and the seedbank increased over time, and we measured a significant correlation between dominant species cover and their seedbank density. Spontaneous species cover was not correlated to the proportion of soil not colonized by seeded species cover, indicating that gaps in vegetation did not influence the development of spontaneous species. Our findings highlight the importance of seedbank in the dynamic of green roof vegetation and demonstrate that analogous habitat species exhibit similar behavior as in their natural environments.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3