Non-structural carbohydrate dynamics of Pinus yunnanensis seedlings under drought stress and re-watering

Author:

Xiao Jiandong,Zhao Zhijuan,Deng Xin,Hu Haocheng,Liu Yuanxi,Sun Jianli,Fu Xiaoyong,Wu Junwen

Abstract

Non-structural carbohydrates (NSC) are an important “buffer” for maintaining plant physiological functions under drought conditions; however, our understanding of the dynamics of NSC at the organ level during sustained drought of varying intensities and re-watering remains poor. In this study, two-year-old Pinus yunnanensis seedlings were subjected to drought and re-watering trials. Plants were subjected to three drought intensities (light drought, moderate drought, and severe drought) as well as control conditions (suitable moisture) for 51 days, including 30 days of drought followed by 21 days of re-watering for drought-treated seedlings, to study the dynamics of NSC in the leaves, stems, coarse roots, and fine roots. Changes in the distribution of NSC concentrations in the organ of P. yunnanensis seedlings under drought stress varied; in the early drought stages, the drought resistance of P. yunnanensis seedlings was enhanced by increasing soluble sugar concentrations; in later stages of drought, the stored starch in organs, stems, and coarse roots was consumed. Drought inhibited the growth of P. yunnanensis seedlings, but the maximum limit of drought tolerance was not reached under the different drought treatments after 30 days. P. yunnanensis seedlings in all treatment groups resumed growth after re-watering, and the growth of seedlings was actually promoted during re-watering in the moderate drought treatment group, indicating that drought induced the compensatory growth of seedlings. The growth of P. yunnanensis seedlings during re-watering was inhibited in the severe drought treatment group, and NSC continued to be regulated in seedlings in this group. Given that P. yunnanensis seedlings maintain growth through the consumption of coarse root starch in the late stages of drought, seedlings with a larger root-to-shoot ratio should be selected for cultivation in actual production. Based on our findings, exposure to moderate drought stress can enhance the drought tolerance of P. yunnanensis seedlings and promote the compensatory growth of seedlings.

Publisher

Frontiers Media SA

Reference62 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3