Correlated evolution of wing morphology and echolocation calls in bats

Author:

Zou Wenyu,Liang Haiying,Wu Pan,Luo Bo,Zhou Daying,Liu Wenqin,Wu Jiashu,Fang Linjie,Lei Yudie,Feng Jiang

Abstract

IntroductionFlight and echolocation are two crucial behaviors associated with niche expansion in bats. Previous researches have attempted to explain the interspecific divergence in flight morphology and echolocation vocalizations in some bat groups from the perspective of foraging ecology. However, the relationship between wing morphology and echolocation vocalizations of bats remains obscure, especially in a phylogenetic context.ObjectivesHere, we aimed to assess the correlated evolution of wing morphology and echolocation calls in bats within a phylogenetic comparative framework.MethodsWe integrated the information on search-phrase echolocation call duration, peak frequency, relative wing loading, aspect ratio, and foraging guilds for 152 bat species belonging to 15 families. We quantified the association among wing morphology, echolocation call parameters, and foraging guilds using phylogeny-based comparative analyses.ResultsOur analyses revealed that wing morphology and echolocation call parameters depended on families and exhibited a marked phylogenetic signal. Peak frequency of the call was negatively correlated with relative wing loading and aspect ratio. Call duration was positively correlated with relative wing loading and aspect ratio among open-space aerial foragers, edge-space aerial foragers, edge-space trawling foragers, and narrow-space gleaning foragers. Wing morphology, call duration, and peak frequency were predicted by foraging guilds.ConclusionThese results demonstrate that adaptive response to foraging ecology has shaped the correlated evolution between flight morphology and echolocation calls in bats. Our findings expand the current knowledge regarding the link between morphology and vocalizations within the order Chiroptera.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Reference74 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3